伶仃洋大桥主跨西侧首件钢箱梁吊装施工。 广东省交通集团供图
当天下午,运梁船载着重达284吨的钢箱梁驶入伶仃洋大桥跨中下方,经过精准定位后,施工人员下放缆载吊机吊具,与钢箱梁上临时吊点连接。完成连接后,缆载吊机向上提升,钢箱梁被平稳拉升到距离水面90米的设计标高,施工人员将吊索与梁段永久吊点通过销接进行连接。
为保证该标段项目首片钢箱梁顺利架设,项目技术攻关团队制定了专项吊装方案,通过3D打印技术制造模型,反复推演施工进程,不断完善施工组织计划,排查安全风险。
同时,项目团队结合实际对缆载吊机进行优化,充分利用先进技术,打造“智慧缆索吊机”,“在吊机内设各种电子传感元件组成缆载吊机智慧监控系统,有效提升钢梁吊装过程中的精度和效率,保障吊装过程安全。”保利长大深中通道S05标工段负责人陆梓生介绍道。
伶仃洋大桥主跨西侧首件钢箱梁吊装施工。 广东省交通集团供图据介绍,深中通道伶仃洋大桥已于1月12日完成主跨东侧首件钢箱梁的架设施工,大桥预计今年4月底实现合龙。(完)
“人造太阳”基础物理研究取得系列新成果****** 实现高性能等离子体稳态运行是未来聚变堆必须要解决的关键科学问题。记者8日从中国科学院合肥物质科学研究院等离子体物理研究所了解到,该所“人造太阳”东方超环EAST团队发挥体系化建制化优势,取得了系列原创性的基础物理研究成果。1月7日,国际学术期刊《科学·进展》发表了该团队在高能量约束先进模式等离子体运行方面取得的重要成果。 托卡马克先进运行模式是当前磁约束核聚变研究的热点之一。EAST团队在托卡马克装置实验研究中发现并证明了一种新的高能量约束模式,这种先进模式大幅度提高了能量约束效率,具有芯部无杂质积累,便于聚变反应生成物排出,维持平稳温度台基等优点,并实现了芯部高约束与边界不稳定性的兼容,保证了长时间尺度上的高性能等离子体运行。这种无需通过外部控制来确保等离子体稳态运行的高能量约束模式,对于国际热核聚变实验堆和未来聚变堆运行具有重要意义。此外,科研团队还在湍流驱动等离子体电流、偏滤器脱靶与高约束等离子体兼容等方面取得重要成果,相关研究成果日前发表在《物理评论快报》和《自然·通讯》上。 我国科研团队在等离子体物理基础研究领域深耕探索,发现系列新的物理现象,揭示和验证了其中的相关物理机制,为聚变堆的建设和运行奠定了坚实的科学基础。(记者吴长锋) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |